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energy of a hydrazine than a dialkylamino gréwmuld result
Department of Chemistry, Usgrsity of Wisconsin ~ in a localized radical cation structure. This proves to be the
1101 Unbersity Ave., Madison, Wisconsin 53706-1396 case, and we believe th2t provides the first system for which
different charges on like units of a radical ion conjugated para
Receied February 16, 1996 to each other on a benzene ring is caused by internal structural
features instead of by ion pairifg.
Tetramethylp-phenylene diamine (TMPD) radical catiah} 2 was prepared by addition of 1,4-dilithiobenzene to ter-
has been important in the development of radical cation butyl diazenium cations, a well-established method for making
chemistry! It was the first organic radical cation prepared bicyclic hydrazine$. It crystallizes in theC; anti-meso form

(see Figure 1), and its geometrical parameters about the NN
|: Me\ O /Me Me\? O "/Me
N—’N\ /NiN\
Me/ M Me Me

" . bond are summarized in Table 1. Both nitrogens are strongly
e, Me . . . .
\NN/ pyramidalized, and the twist angtebetween the nitrogen lone
. wd e pair and the aryl ring p orbital is—37.5. The cyclic
1 1*(loc) 1*(deloc) voltammogram of2 shows reversible one-electron oxidation
waves att0.09 andt-0.38 V vs SCE in acetonitrile containing

(Wurster, 1879), was first formulated as a radical cation by 0.1 M BuN"BF,~ at 25°C. TheAE" value of 0.29 V is 51%
Weitz in 1928, and was one of the first organic radicals to be Of the 0.57 V observed under the same conditions J@F
studied by ESR (Weissman and co-workers, 1958k rate of ~ OXidation of2 (Amax 276 nm,e = 1.1 x 10 M~* cm™) to 2
intermolecular “self’ electron exchange (betweEhand 1*) in acetonitrile by silver nitrate causes the intensity of the 276
was one of the first measurétiand the solvent and temperature M band to decrease about a factor 022NOs™ hadAmax =
effects have been studied thoroughly by Grampp and Jaehicke, ~2/6 NM.€ = 6.8 x 10% and nitrate absorbs some at 276 nm),

; P d the solution turns green because new bands appear at 374
and have played a central role in the application of ET theory an = - X
to organic compounds1t could in principle exist instanta- 1M (€ = 54 x 109 and 756 nm{ = 3.6 x 10°). We assign

— N \jici “w ”
neously in a “localized” structure, with one dimethylamino group the broad fv., = 6410 cnr™) visible band as an “intervalence

. .+ CT band, sdwmax = Marcus’sA = 13 230 cnm! = 37.8 kcal/
lanar and bearing most of the charge and the other remainin J max ; X .
iFr)1 the slightly pyragmidalized geomet?y af (seel™(loc) for a grr}ol.h This 756 nmh band is clea.rly.as+somated with thgpresefnce
diagramatic representation). Instedd,clearly has its charge of the secc_)nd : ydrazine unit. i2 because addlt_lon 0
delocalized the eight at ; dh valent trifluoroacetic acid quenches it instantly. Although intermo-
elocalized over the eight atom system and has equivalent, - oc 11 ET for 2+ is fast on the ESR time scale at room
planar nitrogen atoms (séé&(deloc). In the nomenclature used

for t it talint I lex studies] Id temperature, resulting in the nine-line pattern of ill resolved
or transition metal intervalence complex studieg(loc) wou multiplets expected for four nearly equivalent nitrogesi@ )

be an organic analogue of Robibay Class Il systerfihaving = 6.75 G); it exhibits a broadened five-line pattern-t05(2)

a separate energy well f_or the charge being principally located o¢ jpy 1.9 ,acetone:acetonitrile, demonstrating fHais localized

on each nitrogen, a barrier to ET between the wells, and would i, soytion (Figure 2). Obtaining X-ray crystal structures of
show a charge transfer (CT) band for whiGh converted o ¢jass || complexes has been a problem because they usually
energy units would measure the intrinsic barrier for ET gisnroportionate upon crystallizatiGhas doe€*NOs~, to 22+
(Marcus’s4), and for which the separation of the ground and anq2. " Nevertheless, crystallization of a sample2BPh,
excited state energy surfaces at the ET transition state (2V) COU|dcontainingz by addition of water to acetonitrile produced X-ray

be estimated by a Hush theory analysis. In contrast,1*- quality crystals o2*BPh,~ (see Figure 1 and Table 1). Table
(deloc) is Robin-Day Class IIl system with a single ground 1 compares of the geometries at the reduced and oxidized
state energy well, for whiclimax measurs 2 V for the de-  hydrazine units of2" with those of 2 and a modelN-
localized systerd¢ The delocalization energy gained by having arylhydrazine radical catiorg*.
both nitrogens assume the same geometry fas clearly larger Using Hush’s formula to calculaté (eq 1)5° with “charge
than the reorganization energy required for changing the
geometry at both dimethylamino groups, instead of just at one, Viem ) = (0-0206d)(hvma>AV1/z€ma>)l/2 (1)
which is all that would be required to fordi(loc). )

We report here studies of a dihydrazine analoguéMPD, centers distancet! values of 5.657 A (the X-ray NAFNAr

p-phenylene bis(2ert-butyl-2,3-diazabicyclo[2.2.2]oct-3-yIP, distance) [or 6.278 A, the X-ray NN bond centers distance],

din th tation that th hi izationProducesv(2*) of 2012 cnv* (5.8 kcal/mol) [1813 cm! (5.2
prepared in the expectation that the much farger reorganiza Ionkcal/mol)]. These values are larger than the raxige 3.5 +

(1) For the early history of radical ion studies, see: Roth, H. D. 0-5 found by the same method for a series of bis(hydrazine)

Tetrahedron1986 42, 5097. and bis(hydrazyl) radical cations doubly linked by four saturated
(2) (a) Bruce, C. R.; Norberg, R. E.; WeissmanJSChem Phys 1956
24, 473. (b) Grampp, G.; Jaenicke, \Ber. Bunsen-Ge®hys Chem 1984 (6) For a review on the effects of reorganization energy of amino nitrogen
88, 325. (c) Grampp, G.; Jaenicke, \bid. 1984 88, 335. (d) Grampp, compounds upon ET rates, see: Nelsen, 3drances in Electron Transfer
G.; Jaenicke, Wlbid. 1991, 95, 904. Chemistry Mariano, P. S., Ed.; JAI: Greenwich, CT, 1993; Vol. 3, p 167.
(3) For reviews of electron transfer theory, see: (a) SutirRidg. Inorg. (7) Polynitrobenzene radical anions including that from p-dinitrobenzene
Chem 1983 30, 441. (b) Marcus, R. A.; Sutin, NBiochim Biophys Acta provided early examples of ion pairing localizing the spin (and charge) on
1985 811, 265. one unit through the study of ESR splitting constants. For a review of this
(4) Robin, M.; Day, PAdwv. Inorg. Radiochem1967, 10, 247. work, see p 200 of the following: Hudson, H.; Luckhurst, G.Ghem
(5) For reviews of the application of Hush theory, see: (a) Creutz, C. Rev. 1969 69, 191.
Prog. Inorg. Chem 1983 30, 1. (b) Hush, N. SCoord Chem Rev. 1985 (8) (a) Nelsen, S. F.; Landis, R. T.,JJAm Chem Soc 1974 96, 1788.
64, 135. (c) Reference 5a, p 8, 10. For others uding.x = 2 V for (b) Nelsen, S. F.; Chen, L.-J.; Petillo, P. A.; Evans, D. H.; Neugebauer, F.
Class Ill complexes, see: (i) Woitelier, S.; Launay, J. P.; Spangler, C. W. A. J. Am Chem Soc 1993 115 10611.
Inorg. Chem 1989 28, 758. (iii) Dong, Y.; Hupp, J. Tlbid. 1992 31, (9) Nelsen, S. F.; Kessel, C. R.; Brien, D.JJ.Am Chem Soc 1980
3170. (iii) Reference 10. 102 702.
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Figure 1. Thermal ellipsoid drawings (50% probability level) of the
X-ray crystal structures of (&), (b) 2" unit of 2(BPhy™). The neutral
hydrazine unit is at the bottom.

Table 1. Comparison of Structural Parameters about the
Hydrazine Units

2 2*(BPh)® 2*(BPhy) 3*NO;~
(neutral)  (neutral) (cation)  (cation)
d(N—N), A 1.461(2)  1.454(3) 1.359(3) 1.355(2)
d(N—Ar), A 1.440(2)  1.426(3) 1.436(3) 1.440(2)
aa(Nar), deg 112.0(1)  112.2(2) 116.2(2)  117.0(1)
aa(Nisu), deg 113.1(1)  113.6(2) 118.7(2)  119.1(1)
#(N—Ar), deg —37.5(1) —32.6(8) +47.6(3) —59.7(2)
OCN—NCa, deg —105.8(1) —107.3(3) +67.3(3) —53.6(2)

ad(NAr*NAr) 5.702, d(NtBqutBu) 7.423 A-bd(NAr*NAr) 5.657,
d(NtBu_NtBu) 6.899 A

o bonds!®which includes bishydrazing™, V = 3.9 kcal/molt!
Finding V to be only 33-49% larger for ther-conjugated
benzene-linked syste@™ than the saturated bis fouwrbond
linked 5™ might be initially surprising, bug* is far from having
optimal overlap of its hydrazine units with the benzene ring.
An experimental value fol for optimally aligned planar
nitrogens linked 1,4 on a benzene ring is available from the
optical spectrum of the Type Ill analogde. From theAmax

(1) = 616 nm in acetonitrilé? the maximumV for benzene-
linked trivalent nitrogen charge-bearing units is 23.3 kcal/mol
using Hush’s two-site modéf. A rough estimation of an
expected value fo¥(2+) using theg values for crystalline*™
(which we realize might be different in solution) and assuming
thatV is scaled by the product of the égqor cosp] values for

the two charge-bearing units produd4@*) = 0.32 [or 0.57]-
V(1*), while the numbers obtained from the Hush analysis above
areV(2*) = 0.22-0.25/(1"). Increased N pyramidalization,
which will also decrease overlap, accompanies incregssal

the quantitative angular dependence\bfipon ¢ is probably
complex. We conclude that the twist of the hydrazine units is
crucial for localizing the charge i@". Charge-bearing units
having as good overlap with a benzene ring linking them as
the dimethylamino groups df* would have to havé/4 > V(1t)

to be localized, o/ > 93.2 kcal/mol. We know of no charge-
bearing units with such large reorganization energies. Con-
versely, the relatively large reorganization energies of the

(10) Nelsen, S. F.; Chang, H.; Wolff, J. J.; AdamusJJAm Chem
Soc 1993 115 12276.

(11) Nelsen, S. F.; Adamus, J.; Wolff, J.J.Am Chem Soc 1994
116, 1589.

(12) Nelsen, S. F.; Yunta, M. J. R. Phys Org. Chem 1994 7, 55.

(13) A two-site model is probably not very accurate idr because of
charge delocalization into the benzene ring, but we doubt that th&/rieal
very much larger becaus® is clearly localized.

Communications to the Editor

Figure 2. ESR spectra o2*. (a) 23°C, acetonitrile. (b)-105°C,
12:1 acetone:acetonitrile.

hydrazines are necessary for achieving localization2ir
aromatic or low reorganization energy transition metal charge-
bearing units twisted to have the savias2™ would not have

a large enoughii, to be localized.

The CT band position o2t is sensitive to solvent.
methylene chloride}max = 897 NM €max= 5.1 x 103, Avyp =
6025 cn1?, V = 2130-1920 cn?), sohvmax = 11 150 cn1?,
A =31.9 kcal/mol. However, a plot dfvmax versus the Marcus
solvent parametey = 1/np? — 1/e for 2+ shows considerable
scatter, andhvnyaxis significantly lower for CHCI, than expected
from the values found for other solvents (acetone, dimethyl-
formamide, benzonitrile, and pyridine). Quantitative separation
of the internal and solvent reorganization energies from a plot
of hvmax versusy is therefore unreasonable fa@f. Detailed
reporting of the complex solvent dependencéngf,x for 2+ is
deferred to the full paper. We are pursuing tests of the
applicability of using optical data for delocalized organic radical
ions to estimate the reorganization energy required for charge-
bearing units to give charge-localized structufesnaking
m-conjugated Class Il systems for which the ET rate constant
can be measured, how to quantitate ghdependence o¥ for
conjugated links, and how to understand the solvent dependence
observed fohvmay
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